您现在的位置是: 首页 > 教育趋势 教育趋势

高考三角公式-高考数学公式三角函数

tamoadmin 2024-10-31 人已围观

简介1.如何有效掌握高中数学三角函数?2.文科数学高考必背公式总结3.高考数学。三角函数的诱导公式“奇变偶不变,符号看象限”,什么算奇,什么算偶4.上海高考三角函数考些什么内容怎么熟练掌握,公式知道不会用 急5.2023新高考数学公式如何有效掌握高中数学三角函数?三角函数一直是高考中的重要考点,让很多同学头疼不已,今天小编来和大家分析一下三角函数部分,帮助大家答疑解惑。首先我们来看一下,三角函数部分都

1.如何有效掌握高中数学三角函数?

2.文科数学高考必背公式总结

3.高考数学。三角函数的诱导公式“奇变偶不变,符号看象限”,什么算奇,什么算偶

4.上海高考三角函数考些什么内容怎么熟练掌握,公式知道不会用 急

5.2023新高考数学公式

如何有效掌握高中数学三角函数?

高考三角公式-高考数学公式三角函数

三角函数一直是高考中的重要考点,让很多同学头疼不已,今天小编来和大家分析一下三角函数部分,帮助大家答疑解惑。

首先我们来看一下,三角函数部分都有哪些重要考点,也可以说,同学们需要掌握哪些重要知识点。

角的概念的推广;弧度制;任意角的三角函数;单位圆中的三角函数线;同角三角函数的基本关系式;正弦、余弦的诱导公式;两角和与差的正弦、余弦、正切;二倍角的正弦、余弦、正切;正弦函数、余弦函数的图像和性质;周期函数;函数y=Asin(ωx+φ)的图像;正切函数的图像和性质;已知三角函数值求角;正弦定理;余弦定理;斜三角形接法。

下面我们来说说, 那么到底为什么很多同学觉得三角函数比较难呢?主要有以下三点原因:

1、三角函数公式繁多,记不住,并且使用时亦易混用或乱用。

2、函数图像变换时,混淆周期变换和平移变换的顺序对平移量的影响。

3、解三角恒等变换问题时,如何从角的差异和相互关系及函数名称的差异等,选择和使用公式进行求解。

对于三角函数这一部分的内容,我建议把它拆成两个模块,几何部分包括各种恒等变换公式,以及后续的解三角形,代数部分则主要是三角函数的图像和性质等。在几何这一部分,我总结了一些高考一定会用到的结论和公式,这些是一定要熟练使用的。

三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想。

先给大家分享到这里,如果需要的话,还可以给大家整理一些经典习题,到时候看看同学们的反馈效果如何~

文科数学高考必背公式总结

高中数学对大部分考生来说算是一个比较有难度的学科,尤其是作为一名文科生,数学这种理科科目想必一定难倒了一大半吧!其实,高中数学里面有很多公式,掌握了这些公式,就没有那么难了。下文我给大家整理了《文科数学高考必背公式总结》。

文科数学高考必背公式

一、三角形公式

正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径

余弦定理:a2=b2+c2-2bc*cosA

sin(A+B)=sinC

sin(A+B)=sinAcosB+sinBcosA

sin(A-B)=sinAcosB+sinBcosA

sin2A=2sinAcosA

cos2A=2(cosA)2-1=(cosA)2-(sinA)2=1-2(sinA)2

tan2A=2tanA/[1-(tanA)2]

(sinA)2+(cosA)2=1

二、诱导公式

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)

公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinα

三、函数

1、函数的单调性

(1)设x1、x2[a,b],x1x2那么

f(x1)f(x2)0f(x)在[a,b]上是增函数;

f(x1)f(x2)0f(x)在[a,b]上是减函数.

(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.

2、函数的奇偶性

对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

高考文科数学必背公式口诀

一、《集合与函数》

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

三、《不等式》

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

高考数学。三角函数的诱导公式“奇变偶不变,符号看象限”,什么算奇,什么算偶

“奇变偶不变,符号看象限”。 指的是对于 pi/2 为一个基数指标,三角函数的角度变化。

例如 G=sin(x+k*(pi/2)) ,令 y=sinx>0.

k为奇数,则 函数G就变为余弦函数,至于符号问题,就看角度的终边位于那一象限。

k为偶数,则 函数G还是 正弦函数,至于符号问题,就看角度的终边位于那一象限。

以上便是技巧,请参看:希望对你有所帮助!!

上海高考三角函数考些什么内容怎么熟练掌握,公式知道不会用 急

三角函数最重要的公式有:(sinx)^2 + (cosx)^2 = 1,sin2x = 2sinx * cosx,cos2x = (cosx)^2 - (sinx)^2

至于角度加减pi/2,画图就能看出来,遵循“奇变偶不变”的原则。

积化和差、和差化积不作要求。

2023新高考数学公式

2023新高考数学公式如下:

1.方程:

(1)一元二次方程的解:-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

(2)根与系数的关系:X1+X2=-b/a X1*X2=c/a?

(3)判别式:

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

2.三角不等式:

|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

3.乘法与因式分解:

a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

4.三角函数:

(1)两角和公式:

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

(2)倍角公式:

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

(3)半角公式:

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

(4)和差化积:

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

(5)正弦定理:a/sinA=b/sinB=c/sinC=2R?

(6)余弦定理:b2=a2+c2-2accosB

5.数列前n项和(A~C):

A:1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

B:2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

C:13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

6.圆的标准方程 :

(x-a)2+(y-b)2=r2

7.圆的一般方程:

x2+y2+Dx+Ey+F=0

8.抛物线标准方程:

y2=2px y2=-2px;x2=2py x2=-2py

9.面积公式:

(1)直棱柱侧面积:S=c*h;斜棱柱侧面积:S=c'*h

(2)正棱锥侧面积 S=1/2c*h’

(3)正棱台侧面积:S=1/2(c+c')h'

(4)圆台侧面积:S=1/2(c+c')l=pi(R+r)l?

(5)圆柱侧面积:S=c*h=2pi*h

(6)圆锥侧面积:S=1/2*c*l=pi*r*l

(7)弧长公式:l=a*r;扇形面积公式 s=1/2*l*r

(8)锥体体积公式:V=1/3*S*H(圆锥体体积公式 V=1/3*pi*r2h)

(9)斜棱柱体积:V=S'L

(10)柱体体积公式:V=s*h;圆柱体:V=pi*r2h

文章标签: # 公式 # 三角函数 # 函数